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Abstract 

In this lecture series I present recent developments in perturbation theory 
methods for gauge theories for processes with many partons. These techniques 
and results are useful in the calculation of cross sections for processes with 
many finai state partons which have applications in the study of multi-jet 
phenomena in high-energy colliders. The results ilhnninate many important 
and interesting properties of non-abelian gauge theories. 

1 Introduction 

In high ew.rgy collisions among hadrons and/or ieptons the production of final states 
with a large number of energetic, widely separated partons gives rise to events with 

many jets in the final state potentially important probe on new physics [l], e.g. in 
the case of the sequential decays of new heavy particles, such as a Higgs decaying 
to four jets through real W/Z pairs, or such as a pair of heavy gluinos decaying into 
a multi-jet system through a chain-decay of the various unstable supersymmetric 
particles. The possibility of using these obsetvables to identify new phenomena 
relies on our capability to predict the production rates and features of the standard 
multi-jet production mechanisms which often provide a significant background to 
these discovery channels. 

Consider the production of the top quark at a high energy hadron collider, 

p+ij - t+t+z. 

Sow each top quark decays in the standard model via the following process, 

t---t IV + b, 
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followed by the decay of the W boson into ieptons or quarks. 

IV -l+I 

-t q 7 q. 

Hence there are three signals through which the top quark can be observed, 

l 1 - 2’ + b - h T missins transverse energy, 

l 1 - two jets ~- h - 6 i missing transverse energy, 

l four jets - II + b 

The first of these has the smallest signal rate and smallest background, the next has 

larger rare and background. whereas the finai topoiogy has an enormous background. 
The caiculation of these backgrounds is where the techniques developed here are 

most useful. TVhat is the QCD/EW background to the second top signal? i.e. 
What is the W plus four jet production cross section at hadron colliders? For the 

last top pair signal. suppose rhe experimentalists tag on one of the b-quarks. How 

does the signal to background now compare? For this you need to know the six jet 
production rate from QCD with a b6 pair. 

In this series of lectures I review the recent developments for the calculation 
of multi-parton matrix elements in non-abelian gauge theories. -Most of what is 
discussed here plus references can be found in more detail in the review by lhiangano 
and Parke [2]. 

In Section 2 I describe the helicity-amplitude technique and introduce explicit 
parametrizations of the polarization vectors in terms of massless spinors. An explicit 

QED example is given. ‘Then I show how to decompose the color structures of non- 
abelian gauge theories. first for quark-gluon ampiitudes and then ior pure giuonic 
amplitudes. Many explicitly results are presented. 

Section 3 the factorization properties of the sub-ampiitudes are described. The 
results contained in this Section are useful for a better understanding of the structure 
of multi-parton amplitudes in gauge theories. 

Section 4 introduces the Berends-Giele recursion relations. which allows the cal- 
culaiion of the matrix elements to be performed in a recursive fashion. providing 

an algebraic algorithm which can be efficiently used for numerical evaluation of 
higher order processes. The usefulness of this technique is shown using 11’ plus jet 
production in Hadron Colliders. 

Section 5 describes the various approximation techniques that have been in- 
vented followed by the conclusions and an appendix on spinor calculus and the 
color truncated Feynman rules for non-abelian gauge theories. 



2 Helicity Amplitudes 

The use of h&city amplitudes for the calculation of multi-parron scattering in the 

high-energy (massless~ limit was pioneered in papers by J.D. Bjorken and M. Chen 
:3], and by 0. Reading-Henry i4], and later further developed and fully exploited by 

the Calkul Collaboration in a classical set of papers (5, 61. 

This method relies on two important techniques; 

. the decomposition of the amplitude into appropriate gauge invariant sub- 

amplitudes, 

l and the evaluation of each gauge invariant sub-amplitude using an explicit 
representation of the polarization vectors and spinors for the external particles. 

2.1 Polarization Vectors and Spinors 

Let us start with a simple application of the helicity amplitude technique in QED. 
Consider the process of massless electron-positron annihilation into a photon pair. 

Two diagrams contribute to the process -t-channel and u-channel fermion exchange 
(see Figure 1). If q,q are the momenta of the electron and positron, pl,z are the 
momenta of the two photons. Then the contributions of the two diagrams are as 
follows: 

Aft = ~Wh)& + m(P2)4$, 

SI,. : ~~, $u(n);!p,)i~ - ‘&)i(pl)dg). 12.21 

Where I have used the convention that all particles are labelled (momentum, helicity, 
etc) as if they are outgoing so that C p; E 0, S, = (n + p)* = 2~. q and 
fi E PUT’. 

To check that the sum of these two diagrams form a gauge invariant subamplitude 
( as it must be for this simple case) replace +I) -+ p1 then M1 + M,, must be equal 
zero. This could also have been done with the second photon. ‘This check of gauge 
invariance can be used also in the non-abelian cases considered later. 

To calculate the helicity amplitudes we need projections of the spinors and the 
polarization vectors ior both positive and negative h&city. First for the spinors. ‘,x-e 
use a Wepl basis and write 

(pki f qp);(l =75). (2.3) 



Figure 1: The abelian diagrams contributing to fermion-antifermion annihilation 
into two vectors. 

From these spinors we can form various spinor products 

<pq; = (P -iq+) Lpn; = (p+lq-)> (2.4) 

(P-IT-)=0 (p+lq+j = 0 (2.5) 

which have many useful properties, which are summarized in the appendix. Here 
I want to emphasize one important property that both (pq) and [Pq] are complex 
square roots of S,. 

We can une these spinors to form the helicity projections for the vector particles 
following Xu, Zhang and Chang in Ref.171 

e;(p,k) = ib*!rrik*) 
JZ(k r IPi) 

(2.6) 

Where the momentum, k, is an arbitrary light-like momentum not parallel to p. 
These poiarization vectors satisfy the standard properties; 

$%lJ7 k) = (qP7 k))‘, (2.7) 

E*‘(P,~) ‘P = 0, (2.8) 

c*(p, k) E+(P, k) = 0, (2.9) 

e*(p,k).cF(p,k) = -1 (2.10) 

as well as 

c*(p,k) . k = 0. (2.11) 



The fact that this choice can be made is most easiiy understood from SUSY; under 
a supersymmetry trsnsiormacion. 6.4“ + y(p) y* v. where v is an arbitrary spinor. 

The contraction of these polarization vectors with y,, gives 

4. t-(p:k).- = = ,~k=Ypij(ip~):,k--; + ,ki)(p=i) (2.121 

and a change in reference momentum leads to 

c;(&k) + E;(p,k’) _ v3 “I;‘) 
,kp) jk’p) ‘*’ 

(2.13) 

Note that the factor in front oi the right hand side polarization vector is just unity: 
not some complicated phase factor. This is because of the choice of normalization 

in the definition oi dp, kj. Also. since we will always evaluate gauge invariant sub- 
amplitudes the second term ;ives no contribution. Thereiore we can use different 
reference momentum for different particles and different reference momentum ior 
different sub-ampiitudes. 

Using this machinery w can now calculate M = 1!4~ i :\I, for the various helicity 
projections for our simpie electron-positron annihilation into two photon example. 

For a negative helicity electron and a positive helicity positron we have 

M(q- ,7*,72,(1-) = 
(-ie’) 
x(q -~+d(i f h);(~~) iu-) (2.14) 

(2.15) 

LNOW if we substitute our polarization vectors for the photons choosing k, = k, = q 
Fur both positive or nerative h&city we easiiy obtain 

M(qm,?;,y;,Q+) = i\f(q-,-/;,y;,q-) = 0. j2.N) 

For opposite helicity photons. again choosing kl = kl = q, it is easy to calculate 

that 

.\1(q-;-/;,-f;,4’) = -2ie’, 
iq1)3 (ql) 

(ql)(l4(@)(%)’ 
(2.17) 

Of course. because oi gauze invariance, the answer is independent of which reference 
momentum we choose ior the photons but the ease of caicuiation is not. 

Summing over aii heliciry amplitudes we obtain 

pqz = &dg (2.13) 

which is the weii known resuits 



The real usefulness of these particular polarization vectors is only seen in non- 

abelian theories where the Feynman diagrams contain many t. t’ factors. If the two 
vectors have the same h&city then 

:pp’](k’k) 
e-(P,k) c+(P’,k’) = (kp)(k,p,), 

(PP’) W! t-b k) c-b’> k’) = ~kpl~k,p,,~ 

If k = k’, both these dot products vanish. Suggesting the rule that if two vectors 
have the same heliciiy one shouid use the same reference momentum. 

If the two vectors have opposite helicity then 

bk’!b’k) e+hk). E-(p’,k’) = (kp),k,p,l (2.21) 

Again. if k’ = p or k = p’ then this dot product vanishes. Suggesting the rule 

that for unlike helicities the reference momentum of one of the vectors should be 
the momentum of the other vector. Unfortunately this rule and the one above are 
inconsistent but they can be applied so as to minimize the number of non-zero E. t’. 

2.2 Quark-Gluon Color Decomposition 

Consider a quark and an antiquark with colors a and d respectively then we write 

the amplitude as 

Mq,,, = c jxalxa’ .xa-),, rn(q,&; p,, tl; ” ‘: p,, E,,l&Vq), (2.22) 
pcrm 

where the sum, perm, is over all n! permutation of the gluons. This expansion of 
the quark amplitude in terms of this color basis is well known and ix particular was 
used by Kunszt in Reference [a]. We will call the color basis in Equation (2.22) the 

quark dual basisigl~[lO1, 

For the amplitude squared, 

c .M m.m2 = N”-3(N2 - 1) 2 {In~~Jq,l,... i n,,# + U(AV-~)}. (2.23) 
color, iL...,nl 

Sotice the exponent of the leading power of N. The explicit form of the sub-leading 
terms for n = 2,3,4 is given in reference [lo]. 

Consider quark-antiquark scattering into two gluons as a simple example. There 
are three diagrams which contribute to this processes7 the two QED diagrams of 



a 

Figure 2: The non-abelian diagram contributing to fermion-antifermion annihilation 
into two vectors. 

Fig. 1 plus the s-channel diagram, Fig. 2. which is purely non-abelian in nature. 

The co101 structures of the t.u and s-channel diagrams are 

(A”’ A”’ )o& : (A”’ A”’ )a& 

,y, f”“‘“’ = ” j$xv),, - (Y’XQ),,] (2.24) 

respectively. Our normalization of A” is tr(X”Xb) = Pb, hence fi in the last 
equation. 

Therefore for the color factor (XalXa’),, we h ave a contribution from both the 
t- and s- channel diagrams. For a negative helicity quark and positive h&city 
antiquark the subamplitude is given by 

Mq-,Yl,Yz,q-) = 
(-ig’) 
T 

h 
iq -: -fu iq-) ((pl - p2jPc, ez T 2~ pzei; - 2~~. pie;) 

i- (-igz) 
--!P -I i(Pl)(G + Pl)3P2) Iq-) 

S‘PP, 

For both gluons with negative or positive h&city it is trivial to show that this 
subamplitude vanishes. by choosing the same reierence momentum k for both gluons. 

m(q-,Y7,Y:,q’) = m(q-.Y;,Y;,q’) = 0 (2.26) 

Tn the case that the giuons have opposite helicity then 

m!n-,s;,sT,?+) = iy?(qlj’$~~~~~(gqi (2.27) 



mi,qm,y;,y;,q’) = ig’ :q2Y(92) 

(Pl)(=)wm) 
(2.28) 

which is most easily shown by choosing the reference momentum for giuon one to 
be the momentum oi the second gluon and vice versa; with this choice the s-channel 
contribution vanishes. 

In general the amplitudes with all particles or all but one particle having the 

same helicity vanishes at tree level. Also the quark and the antiquark must have 
opposite h&city or otherwise the amplitude vanishes from chirality conservation in 
massless QCD. The ampiicudes with one gluon the same helicity as the quark or 
antiquark and all other giuons having the opposite helicity have simple expressions: 

m~~(~+,q-,Y;,...,y;,...,Y,f) = ig” _ 
(qz) WY 

(44)(91)(12) ” (W) 

wq,(4-, ‘I-: g,e,....y; ,... .y,‘) = ig” _ (W(d) 
(44)(41)(12) ‘.. (4’ 

(2.29) 

Other amplitudes are more complex, e.g. the general form of the quark-anti uark 

four gluon amplitude has the following pole structure as dictated by dualityI 9 1: 

md%q,gl,g2,ihvy4) = id 
PI 

+ 
p2 

tqq1&*&1.%3&1 tq13SqlS12S34S4Q 

+ p3 p, 
h23S1ZS13S4.&p i s&lsI2s23.%&Q 1 .(2.30) 

The numerators Pi are complicated and I refer you to reference jlO] for explicit 
expressions for these quantities. The sub-amplitudes defined by equation (2.22) 
have similar properties to the purely giuonic ones in the soft, collinear and multi- 
particle pole limits. see Section 3. 

To construct the QED results from the non-abelian amplitudes all that is needed 

is to replace A,,. in equation (2.22) by Sad, for details see reference ill]. For 
example, one of the helicity ampiitudes involving an electron, positron and n photons 
can be written as 

iqz+ ,e-;y; ,.... y; ,...( f) = ie; (e4 (Q 
(&) @g) kw:~~~ (4 

= ien”y v (Q;;;c, 0 (2.31) 

In this example one can see that for the abelian ampiitude the photons are emit- 
ted independently of each other whereas for the non-abelian amplitude there is a 
correlation between the emitted gluons. 



To exrend this quark dual basis to more than one quark antiquark pair I refer 

you to the paper by Mangano ill!> and here I briefly sketch the coior basis. For two 

quarx-antiquark pairs of different flavors with colors a> a’ and & 5’ the dual color 

expansion is 

MqnQ~c+g = x (flX)as(~ X)&i r&y(u,r) 
i‘-,Tl = 7 

(2.32) 

where the sum is over ali partitions. {u,r}, of all permutations of the n gluons. The 
first term is the contribution in which the color flow connects cx to 6 and a’ to 6 
whereas the second term comes from the color flow connecting a to 6 and a’ to 6’. 
For two quark pairs of the same flavor one must add Mqn~iopnp to MqqpQtplnp. Similar 

factorization properties IO rnflq also hold for rngqgp, and I&,,,. 

2.3 Pure Gluon Color Decomposition 

Consider an SU(N) Yang-Mills theory, then at tree level in perturbation theory, 
any vector particle scattering amplitude, with colors al, al a,, external momenta 

p1,p2 .p,, and helicities cl, e1 cn, can be written as 

J%., = c tr(X”Xa’...X”-))(pl,~l;p~,cl;...;p,,c,), (2.33) 
per-’ 

where the sum, perm’. is over all (n - l)! non-cyclic permutations of 1,2,. . . , n and 
the X’s are the matrices of the symmetry group in the fundamental representation. 
This expansion is known as the dual expansion because of the invariance of the 
sub-ampiitudes under cyclic permuiations;?2’. 

The proof that one can always make this expansion is very simpie using the iden- 
tities [X”.Xb] = i&f&’ and tr(h”X*) = 6 Ob. In any tree levei Feynman diagram. 
replace the color structure function at some vertex using 

f& = -(i/v?!) tr(X”X*X’ - X’XbX”). (2.34) 

-Vow each leg attached to this vertex has a A matrix associated with it. At the other 
end of each of these legs there is either another vertex or this is an external leg. 
If there is another vertex, use the X associated with this internal leg to write the 
structure function of this vertex fed. A’ as -i [Ad: X’]/v’!j. Continue this processes 
until all vertices have been treated in this manner. Then this Feynman diagram 
has been placed in the form of eqn(2.33). Repeating this procedure for all Feynman 
diagrams for a given process completes the proof. 



The sub-amplitudes 41,2,...,n) E m(~,,t,;p~,c*;...p,,~,) 
satisfy a number of important properties and reiationships. 

of eqn(2.33) 

(1) m(1,2,. ~ u) is gauge invariant. 

(2) m(l,2,. . : u) is invariant under cyclic permutations of 1,2,. . , n 
(3) m(n,n- l,... ,l)=(-l)“m(l,2,....n) 
(4) The Dual Ward Identity: 

7741,2,3,...,n) + m(2,1,3,...,n) + m(2,3,1,...,n) (2.35) 

+ ... + m(2,3,...,1,n) = 0 

(5) Factorization of m( 1,2,. , ~a) in the soft, collinear and 

multi-gluon pole limits. 
(6) Incoherence to leading order in number of colors: 

c EM,,;’ = 
-. 

N”-‘(Nr - 1) c {,m(1,2,-.+)I’+ O(N-‘)}. (2.36) 
p.PTTl’ 

This set of properties for the sub-amplitudes, we will refer to as duality and the 
expansion in terms of these dual sub-amplitudes the dual expansion. Properties 
(1) and (2) can be seen directly from the properties of linear independence, for 

arbitrary N, and invariance under cyclic permutations of tr (X1X2.. .A”). Whereas 
(3) and (4) follow by studying the sum of Feynman diagrams which contribute to 

each sub-amplitude. The sum of Feynman diagrams which make the Dual Ward 
Identity is such that each diagram is paired with another with opposite sign so 

that the combination contained in eqn(2.35) trivially vanishes. Property (5) will be 
discussed in great detail in section 3 and the incoherence to leading order in the 
number oi colors (6) follows from the color algebra of the SU(N) gauge group. 

To the string theorist this expansion and the duality properties (1) to (6), see 
j13!, are quite famiiar since the string amplitude. in the zero slope limit. reproduces 
the Yang-Mills amplitude on mass shell [14]. Each sub-amplitude is then represented 
by the zero slope limit of a string diagram, and the sub-amplitude could be obtained 

by using the usual Koba-Nielsen formula [15]. The traces of X matrices are just the 

Chan-Paton factors;161. For the string amplitude the properties (1) through (6) are 
satisfied even before the zero slope limit is taken. Also from the string diagrams it 
is simple to see which Feynman diagrams contribute to a given sub-amplitude, e.g. 
Fig. 3. The coefficients for the contributing diagrams are obtained by the procedure 
developed earlier in this section for *e-writing the color factors. The reiationship 
between the string diagram and our dual sub-amplitudes suggests that a Yang-Mills 
amplitude expressed in terms of these dual sub-amplitudes will assume a particuiarly 
simple form. 

The gauge invariance and properties under cyclic and reverse permutations allows 
the calcuiarion of far fewer than the (n - l)! sub-amplitudes that appear in the dual 
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Figure 3: The zero-slope iimit of the four giuon string diagram in terms of Feynman 

diagrams (tri-gluon couplings only). 

expansion. In fact the number of sub-amplitudes that are needed is just the number 
of different orderings of positive and negative helicities around a circle. Of course 

some of the sub-amplitudes vanish because of the partial helicity conservation of tree 
level Yang-IV& and others are simply related to one another through the properties 

(2) through (4). 

For four gluon scattering only the he&city conserving amplitudes are non zero. 
There are many ways to see this, here we will give the most direct one. Each term in 
the four gluon amplitude contains at least one e. e’ factor. By choosing appropriate 
reference momenta you can make all e. E’ factors zero in all helicity configurations 
except those that are he&city conserving. Using the convention that all particles 
are labelled with their helicities and momenta as if they were outgoing, i.e. the 
incoming particles have negative energies, the h&city conserving sub-amplitude 
(l+, 2-, 3-,4*) is given by 

m(l:,2;,3;&) = -2igz ~PI~P~).~JPz~PI) dn,bj ‘~2 Gp4,p3).pl 

&3 

(23)’ 
= igz(12)(23)(34)(41) 

(2.37) 

where the gluons are labelled with superscripts which are the helicities and subscripts 
which are the reference momentum. For this heficity configuration and this choice 
of reference momenta the only non-zero e. e’ is e1 e2. 

In general the four gluon scattering subamplitudes are given by 

m2+r-(1,2,3,4) = -ig 
2 (IJ)‘[KL;’ 

s12 &3 
(IJ)’ 

= ig*(12)(23)(34)(41) 
(2.38) 
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Figure 4: The zero-slope iimit of the five gluon string diagram in terms of Feynman 
diagrams (tri-gluon couplings only). 

The momenta I and J (Ii and L) in the numerator are the momenta of the nega- 
tive (positive) h&city giuons independent of their ordering in the sub-amplitude, 
whereas the order of the spinor products in the denominator is only determined by 
the order of the momenta in the sub-amplitude. Using the properties of the spinor 
product is simple to demonstrate that eqn(2.38) satisfies the four particle Dual Ward 
Identity (2.35). 

In squaring the four gluon amplitude and summing over colors the U(N-‘) terms 
in eqn(2.36) can be shown to vanish by using only the general properties. especially 
the Dual Ward Identity, of the sub-amplitudes. Therefore, 

d& lb’4,1Z = N’(N’ - 1) c jm(l,2,3,4)1’, (2.39) 
i--m’ 

and the square of each sub-amplitude is very simple because the spinor product is 
the square root of twice the dot product. The final result is the standard four gluon 
matrix eiement squared. 

c c lMd* = ~V2(N2 - 1) d he,. do.. ,Cn, s,,s,s~,,s,, (2.40) 

Here we have not averaged over incoming helicities or colors. 

For five gluon scattering only those Feynman diagrams, or part there of, with 
coior structure the same as the diagrams of Fig. 4 contribute to the m(l, 2,3,4,5) 
sub-amplitude. 

Again, it is a straight forward, simple calculation [12] to show that the only 
nonzero sub-amplitudes have either two or three negative helicity giuons and that 
the three positive two negative helicity sub-amplitude is given by 

(IJ)’ 
mw-Cl.2,3,4,5) = igs(12)(23),(34)(45)(51)’ (2.41) 
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Figure 5: The zero-siope iimic of the six gluon string diagram in terms oi Feynman 
diagrams (tri-gluon coupiings only). 

Where I and J are again the momenta of the negative helicity gluons and the denom- 
inator ordering is determined by the order of the momenta in the sub-amplitude. 

The two positive three negative helidty amplitude is obtained from this last equa- 
tion by complex conjugation. By using the Fierz properties of the spinor product it 
is easy to demonstrate that eqn(2.41) satisfies the five particle Dual Ward Identity, 
eqn(2.35). 

Again, the general properties of the sub-amplitude can be used to show that the 

O(N-‘) terms in eqn(2.36) vanish for the five gluon process giving the following 
standard resuit that 

lMsBiZ = 2 N3(N* - 1) g8 

Here we have not averaged over incoming helicities or colors. 

For the six gluon process only those Feynman diagrams, or part there of. with the 

same color structure BS the diagrams of Fig. 5 contribute to the m( 1,2,3,4,5,6) sub- 
amplitude. Then. by using the appropriate reference momenta for the polarization 
vectors it is easy to see that the only non-zero sub-amplitudes are those with four 
positive - two negative. two positive - four negative and three positive - three negative 
helicities. After a lengthy calculation we have obtained the following expressions for 
the six gluon sub-amplitudes. 



The sub-amplitudes for the four positive - two negative h&city processes are a 

straight forward generaiization of the four and five-giuon sub-amplitudes: 

n~,+~-(l~ 2.3,4,5,6) = ig4 VJY 
(12)(23)(34)(45)(56!(61) 

(2.43) 

Again, I and J represent the momenta of the negative helicity gluons. Different 

permutations can be obtained as before by keeping iixed the numerator and per- 
muting the momenta in the denominator. The two positive - four negative h&city 
sub-amplitude is obtained from eqn(2.43) by complex conjugation. 

The three positive three negative h&city sub-amplitudes are not as simple. To 
exhibit the factorization on the three particle channels these sub-amplitudes are 

rn~+~-(1,2,3,4,5.6) = ig’ 
(12 P2 

hZ3&1S23S16S58 A t23,.%,&4&6.%l 
(2.44) 

i -? 

h16&4S4&s,2 

f t,23!% +- h-la + hE.~3 

%?&3&1&6S66Sl3l I 

where the tijk 5 (p; + pj + pi)' = S;j + sjk r Ski. The coefficients a,P and 
7 for the three distinct orderings of the h&cities are given in Table I. With this 
representation it is a simple exercise to show that these sub-amplitudes factorize on 
the three particle poie into a product of two four particle sub-amplitudes, eqn(2.38), 
times the three particle propagator. 

Table I 
Coefficients for the msc3- Sub-amplitudes: 

where (ZlKlJ) s (I + jl( .-y/J+), which is linear in K 
and if KZ = 0 is given by iZK!(KJ). 

I lf2+3+4-5-6- l-2+3-4t5-6- 

x=1 t2+3 Y=1+2+4 

,a ! -i12!(56)(WP) 1 [13](46)(5lZm 
: b' i !23!(56;(1/.Y,4) 

~ Y 1 
[24lW(1lT’) I f511(WW~j? 

[12!(45)(3lXI6) !12)(35)0 

The six gluon sub-amplitudes satisfy the three distinct Dual Ward Identities 
obtained from the following equation 

m(1,2,3,4,5,6) + m(2,1,3,4,5,6) Y- m(2,3,1,4,5,6) 

+ m(2,3,4,1,5,6) + m(2,3,4,5,1,6) = 0 (2.45) 



using the helicity ordering of the first term as either m(l+, 2+, 3+, 4+, 5-, 6-), 

m(l+,2+,3+,4-,5-,6-)orm(1+,2->3+,4--,5+,6-). ThesethreeIdentitiesare 

extremely powerful and reiate sub-amplitudes with different orderings of the helici- 

ties. 

Given the simplicity of the sub-amplitudes with two negative he&cities and all 
the others positive, equations (2.38), (2.41) and (2.43), it is obvious that the gener- 

alization to arbitrary n is 

m(,-,I+~-( 1,2,. . . ,n) = ig”-’ VJ)’ 
(12)(23) ... (nl) 

where once again I and .I are the momenta of the negative h&city gluons. Apart 
from this being the natural square root of the expression given by Parke and Taylor 
[17], it also satisfies the Dual Ward Identity for arbitrary n. 

The complete square of the six-gluon amplitude, including the non-leading color 
terms is 

c 1Msa12 = 
U&W 

N’(N’ - 1) I3-s ( m(1,2,3,4,5,6) 1’ (2.47) 

+ $ (mw(l,2,3,4,5,6)[n(l,3,5,2,6,4) 

+ m(l,3,6,4,2,5) + m&4,2,6,3,5)] +c.c). 

Note that the sub-amplitudes add incoherently to ieading order in the number of 

colors and the simplicity of the non-leading color terms is achieved by the properties 
of the sub-amplitudes, especially the Dual Ward Identity equation (2.35). This re- 
sult together with the expressions for the sub-amplitudes, eqn(2.43) and (2.44), can 
be used to calculate the matrix element squared by evaluating the sub-amplitudes 
as complex numbers. Owing to the simplicity of the sub-amplitudes and the sim- 

plicity of the leading and non-leading terms in the number of colors this method of 
calculation is appreciable faster than previous numerical algorithms. 

The ordering of the gluons in the non-leading color terms is of particular import. 
These terms are the only possible ones which have no two or three particle propaga- 

tors in common with the original ordering (1,2,3,4,5,6) and as such are less singular 
in the collinear limit than the leading part in IN. In fact the non-leading color terms 
are finite in the collinear limit so that in this limit they are completely irrelevant 
compared to the leading color terms. Also by comparing numerically the leading to 

non-leading pieces for N= 3, the non-leading terms contribute in general only a few 
percent to the total cross-section. This result is even true in the soft gluon limit. 
‘Therefore the non-leading terms can be ignored given that this calculation is only 



to tree level, and the other uncertainties in any Monte Carlo application are much 

larger than this uncertain. The smaUness of the non-leading color terms and the 
fact that the leading color terms are just the squares of the simple sub-amplitudes 

implies that the square of this matrix element is easy to obtain. 

3 Factorization Properties 

The most important and remarkable properties of the Yang-Mills dual sub-amplitudes 

are their factorization properties, whose origin can be traced back to the string pic- 
ture. In this section we give the factorization properties of the gluon sub-amplitudes 

in 

(1) the soft gluon limit, 

ii; 
when two gluons become collinear and 
when three giuons add to form an on mass-shell gluon 

i.e. on the three gluon pole. 

For arbitrary n-gluon scattering these factorization properties of the sub-amplitudes 
will extend up to factorization on the [n/2]-gluon poles. 

First, we consider the soft gluon limit. Consider the sub-amplitudes when &on 
1 has an energy which is small compared to all the other energies in the process. 
Then the gluon sub-amplitudes must satisfy 

m(l+,z . ..( n) I+** (,,g1(;(12)2)} m(2,3...vn) (3.1) 

m(l- ,2...,n) l-x’* (~~~;;l”;i) +%3...,n). (3.2) 

‘The factors in braces are square roots of the eikonal factor 

2 h .PZ) 
(P”‘P1) (p1.n) 

This soft gluon factorization and the incoherence of these sub-amplitudes to leading 
order in the number of colors, N, leads to the soft gluon factorization of the full 
matrix element squared as proposed by Bassetto, Ciafaloni and Marchesini [lS], 

1 +4,,,* l-9 IAij(2,“. +)I’. (3.3) 
c&or, 

In the limit when two gluons become collinear. Altarelli and Parisi !19] demon- 
strated that the double poles associated with this collinear pair do not appear in 



the full amplitude squared i.e. there is a cancellation of one power of the propagator 

of the sum of the two collinear gluons. This cancellation occurs at the amplitude 
levei rather than the square of the amplitude in this dual formuiation. Therefore the 

squared sub-amplitudes diverge no more rapidly than a single power of the propa- 
gator for the &Linear giuons. this is the Altareiii and Parisi observation. The origin 
of this behaviour of the duai sub-ampiitudes stems from the factorization properties 

of string amplitudes. 

To demonstrate this square root divergence of the sub-amplitudes in the collinear 

limit, consider the case when the momenta of particles 1 and 2 become parallel. Let 
1 ---) t P and 2 -+ (1 - L) P with P’ = 0, and z is the momentum fraction of 
particle 1. Then the sub-ampiitudes become 

r741+,2+,3, ._ .) “2’ 
ig [12] 

i ) 
Jq--q e m(P+>3,...) 

41 +,2- ,d,...j 7 I* - !I 2- lJ-4 \ ig ~‘(12) -i 
41 2) 3;IT m(Pf,3,...) 

+ 
1 

;,;s2’ 
I 

2 m(P-,3,...) 

m(l-,2-,3,. .) I-:- 
ig (12) 

i I J&T 2 m(P-, 3,. . .). (3.6) 

Note that either (12) or j12] appears in the numerator of each term. Also. it is useful 
to interp:et the factor in braces as the “three gluon sub-amplitude” in the limit 

when two gluons become collinear. This three gluon sub-amplitude has the square 
root suppression of the pole as well as having the square root of the appropriate 
Xltareiii-Parisi gluon-fusion function. From tbis resuit and the incoherence of the 
sub-amplitudes in the square of the matrix element the standard results oi Altarelli 
and Parisi are obtained in a simple manner. 

The sub-amplitudes also factorize in the three particle channel: here let P = 
1 + 2 + 3, then as Pz + 0 it is easy to see that 

m(L2,3,%5,6) --t m(l,2,3,-P) s m(P,4,5,6) (3.7) 

for the helicity structure three positive and three negative. Since helicity is conserved 
in the iour giuon process. the helicity of the intermediate gluon is determined for 

this heiicity structure and the iour positive - IWO negative helicity sub-amplitude 
has no three particle poles. 

Of course the full matrix element must also factorize. This is triviai in Feynman 
diagram language but here it is not so obvious because of the way we have added 



diagrams together. The color factors almost factorizes for an SU(N) gauge group, 

tr (X1X2 .X”) = c tr (A’ . X”X*)tr ( X”Xrn” . . A”) (3.8) 
r 

- +(X1...X”)~r(Am+l . A”). 

This “factorization” property of the traces follows from the identity 

F xyj x;, = (6d 6jk - $6ij 6/d). (3.9) 

The l/N term could destroy the full factorization, but it does not. Terms pro- 
portional to l/N vanish at the pole because of the Dual Ward Identity for the 
sub-amplitudes. Therefore, all the gluon amplitudes discussed in this paper satisfy, 
as expecred, the factorization property 

M n+n, - ~J%.,, 2 M,l+, (3.10) 

as P’ + 0 for n,n’ 1 2. The sum is over the color and helicity of the intermediate 
state. 

From this multi-particle factorization we can understand why the helicity am- 
plitudes(- - +... T) and (+ + - . -) do not contain any propagators with 
more than two particles. The residue on a pole with more than two particles in 
the propagator is a product of two subamplitudes one of which has the following 
helicity structures (+ +), (- + . . . +), (+ - . -) or (- . . . -). All of which 
have been shown to vanish. Therefore these special helicity structures have only 

soft and collinear p&s. 

4 Recursive Relations 

The color structure for purely gluonic and processes involving gluons and a quark- 

antiquark pair defined in previous sections allows for the reorganization of the per- 
turbation theory in a efficient and straight forward manner. The building blocks 
are color ordered vector and spinorial currents defined with a gluon off mass shell, 

or a quark or antiquark off mass shell, with all other particles on mass sheil. If 
you have calculated these building blocks for n on mass shell legs then there are 

recursion relationships, the Berends-Giele recursion relations, ref.120!, which allow 
you to simply evaluate these currents with (n + 1) on mass shell iegs. This allows 

for computer evaluation of processes with a large number of external particles [211, 

A detailed and self-contained description of the use of recursive relations in the 
calculation of muiti-parton processes can be found in Giele’s thesis [221. 
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Figure 6: The color ordered gluonic current. 

4.1 Color Ordered Gluon Currents 

From the set of coior truncated Feynman diagrams that make up the subampli- 
tude, m(l,2,. . , n), one can form a coior ordered gluonic current by replacing the 

polarization vector of the n - th gluon with the propagator and allowing the mo- 
mentum of this gluon to be off mass shell but still retain momentum conservation. 

This color ordered gluonic current will be represented by Fig. 6, where the dotted 
line represents the gluon which is off mass shell. This current will be written as 
J,,(l,. . . , n - 1) and the subamplitude can be reconstructed from this current by 
multiplying by the inverse propagator and contracting with a polarization vector 

and allowing the momentum of this gluon to be on mass shell, 

m(l,Z,...,n) = itPL(pn) i[P(l,n - 1)12 J,(l,. . ,n - 1)l lP(l.n--l)=--p,r (4.1) 

where. P(l,n) E xyp,. 

Of course these currents, J,, are not gauge invariant and do depend on the choice 
of reference momenta chosen for the (n - 1) on mass shell gluons. Also they depend 
on the helicity of the on mass shell gluons. Kowever these color ordered gluonic 

currents can be used as building blocks for gluonic currents with more external on 
mass shell legs. 

Consider a gluonic current with ~1 on mass shell gluons. Then the off mass shell 
glum is attached to the rest of the gluons either through a three or a four point 
color ordered gluon coupling. At these vertices the other legs are attached to color 
ordered gluonic currents with fewer than n on mass shell gluons. This can be seen 
diagrammaticaiiy in Fig. 7’. Hence, the color ordered gluonic current with x on 
mass shell gluons can be written in terms of gluonic currents with less than n on 
mass shell gluons. This is the Berends-Giele recursion relation@‘1 for gluonic color 
ordered currents and aigebraically it is written as 



I 
L _ . . . 6 $ 

I 
- A . ..g 

? 

1’2 1-I 
.-J&< 

CJ yl 3 

n-2 n-1 
= c ---.--: 

‘” z1 

+ ,z ,c ------; ----- 3 

_,+I 

qy 

,‘,*I j qi 

0 
CI 

13 
(k .’ > 

‘c 
n +I 

“Ck 
j l , 

Figure i: A graphical representation of the Berends-Giele gluonic recursion relation. 

Jp(l,...,n) = p(l,~)‘tn~V3YY’(P(l,i),P(i+l,n))J,(1 ,..., i)J,(i+l,..., n) 
I-1 n--l n-2 

+cc V4P’” J”( 1 , . . ,i) J+,(i + 1,. . ,j) .I& + 1,. . ,n)} 
j=i+C i=l 

where the color ordered three and four gluon vertices are, 

(4.2) 

I-‘3”‘P(P,Q) = is (g+- (P-Q) - 2gpp Q” - 2gP” P’), 

2 
V4’“p” = i$ (2gW gy’ - gw gpll - g’o gV”). (4.3) 

The current with one on mass shell gluon is defined as 

Jr(l) = ‘r(P1). (4.4) 

The giuonic currents, J,( 1,. . !n), satisfy properties that are similar to the gluon 
subampiitude. m(l,21. n). 

1. Duai Ward identity: 

Jp(1,2,3,....~~) + 5,,(2,1,3 ,..., n)... + Jp(2,3 ,... .n,l) =O. (4.5) 



2. Reflectivity: 

J,(l,...,n) = (-l)"+' JJn,....l) 

3. .I,( 1,. . . , n) is conserved: 

(4.8) 

P(l,n)P JJl,....n) = 0 (4.7) 

There are simple analytical expressions for the color ordered gluonic currents 
if all the heiicities are the same or if one is different from the others. Of course 

we must define the reference momentum for the gluons. Here the symbol i for the 
gluons must be expanded to ii where the i-th gluon has helicity X and reference 

light-like momentum k. Then 

J,Jl:,‘;,....n;) = g”-’ 
(k -/ Y,, k&n) lk+) 

~‘2 (kl) (12). ,;n - ln) (nk) 
(4.8) 

Jp(1;,2;,...,n;) = (-l)“g”--’ (k +, Y,, rj(l,n) lk-) 
,h [kl] [12]. . [n - ln] [nk]’ 

(4.9) 

Berends and Giele. ref.(20], give compact expressions for J,,( 17,2*, . , n’) for 
a given choice of reference momenta. 

4.2 Color Ordered Quark Currents 

For the subamplitudes involving a quark-antiquark pair and gluons one can define 
a Quark and Antiquark color ordered spinoriai current. see Fig. 8. in a way similar 
to the giuon currents that were defined in the last section. \Ve will write the Quark 
current as u(q, 1,. ~ n) and the Antiquark current as V( 1,. , n, ?f). 

The quark-antiquark pair plus gluon subamplitudes can be obtained from these 
currents as follows: 

m(q,L....%G = (nI(+i)(-i+ fv,n))V(l,...!n,q) l~+P(Ln)=-q 

= UC,, 13 “. ,*)(-a4 f @(l, n)) I) (*tp(l,,)=-, (4.10) 

In manner similar to the gluon current. a recursion relation can be written for 

this coior ordered Quark current [20], see Fig. 9, 

n-1 
fl’(% 1.. > n) = s q,, 1.. Im)“sy”.J,‘(m + 1,. ~ 7x) : 

TtlZ” Jz (4 T P(l,nj) (4.11) 
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Figure 8: The quark. (a), and antiquark, (b) color ordered spinoriai currents. 

and for the Anti-quark currentI 

V(l,..., n,q)= i- ^ -i -Q.J,(1,...( m)V(m+1,..., “,9) 
2 (q + P(l,n)) d5 

(4.12) 

and where the spinor currents for the zero gluon case are defined to be 

U(q) = -ii(q), 

in Bjorken and Dreil notation. 

VW = 4a (4.13) 

These color ordered spinor currents can be defined for massive or massless quarks. 
For massive quarks the propagators in the recursion reiations Eqs. (4.11,4.12) must 
be modified by adding the appropriate mass term. For massless quarks these spinor 
currents carry a chirality such that 

(1 = y5) t’Cl,....n>Q=) =o, n(q*,l,...,n)(l 5 rs) =n. (4.14) 

Also for the massless case the zero gluon currents are simply 

n,=) 5 (n*l, v(p) 3 IqF). (4.15) 

Again there are simple analytic expressions for these color ordered spinor currents 
when all the gluons have the same h&city as the fermion. 

qq+,l;,...77z:) = -9” 
@-;(~+&l,n)) 

(q1)(12) “. Ink) : 
(4.16) 

U(q-.l;,...,n;) = -(-g)” @ +l(i+ @(Ln)) 
jq1][12] ‘. jnk] ( 

(4.17) 
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Figure 9: Graphical representations of the Berends-Giele quark, (a), and antiquark, 
(b), recursion relations. 

V(l:,...,n:,Tj+) = -g* 
(5 + hn)) Ik+l 

(Ifl)(lZ).~~(TL~) ’ 

v(l;?..‘ln;,r) = -(--9)” 
(d + hn)) Ik-) 

ikll[121~~~in$ 
, 

If there is one glum with opposite helicity to that of the fermion, the spin&d 

currents are 

hk!(q + I 
Vq’,L) = -9 [ql][lk] > (4.20) 



and 

U(q-,l;) = 9 (;*k;;;l;-’ , 

V( l;,qf) = -g fJ;,\;; 

v(l;,q-) = g c,‘;;;;. 

(4.21) 

(4.22) 

(4.23) 

Finally, for two gluons with opposite helicity, we have the following spinoriai 
currents. 

U(q-, I:, 2;) = -2 (@12 

(ql).%(q + 1 + 2)’ 
(l+/(i+i+i), (4.24) 

qq-, l;,?;) = 2 Pqhl) , . (4.25) 

v(1:,2;,q-) = (i+i+~),2+!(-9:;;$ [@] 
11 

(4.26) 

and 

(q’ (4.27) 

A straight forward example using these currents is to calculate the sub-amplitude 
for (q-,1+,2-,ij+) process, 

m(q-,:‘.2-.-’ q ) = a(,-) qi + 1 +ij) v(1:,2;,q*) 

G? (92Y@) 
= (ql)W)Gm(G%)’ 

which is the previously obtained result. The spinorial currents. defined here can be 
used to derive many of the results of other section, especially the section involving 
multiple gauge groups. 

4.3 The Insertion of a W or Z 

.A spontaneously broken gauge group does not have a simple generalization of the 
previous subsections. However, the insertion of one such massive vector particle, 



1V or Z. can be easily incorporated. Consider the scattering oi a quark-anriquark n 

gluons and a W vector boson. Then the amplitude for this process is written as 

4% 1, I ‘. 1 n> 4; W) = C( A’ A”);; m(q, 1,. , n, q; NJ) 
P 

(4.29) 

where the subampiitude can be written as 
n 

m(q,l....,n,iJ;W) = i t& Ci7(q-,1....,i)rp (l - ‘“hqi + 1.. . , n,qT). (4.30) 
i=0 2 

Here the recursion techniques have been explicitly used. 

This expression can be used in one of two ways: either one can square it directly 
or allow the W boson to decay into another fermion-antifermion pair. If one squares 

this expression direcrly the reiationship 

~+;;’ = -g@‘y I \;;‘2”” 

PO‘ w 
(4.31) 

can he employed 

The other alternative is to replace the poiarization of the W vector boson by the 

amplitude for it to decay into a. iepton-antilepton pair. Then Eq. (4.30) is written 
as 

m(q, 1,. 1 n, q; L, L) = -i U(L-)yr 
(l 275)v(E+) 

x 
(-SW l- %$y 

(W’ - ‘If& + Mwrw) 

x (1-75)V(i+1,... n $X432\ 1, ., 
id 

If we use the fact that the charged lepton is effectively massiess. compared to Mw, 
the Fierz rearrangemenr gives 

m(,q,l,... :n,q;L,L) = 
n 

-2i C 
U(q-,l,..., i)l.L’) (L+lV(i+l,...,n:q+) 

(W - M:, + iMwrrv) 
(.4.33) 

,=o 

Using the results from the recursion relation section of this report. the sub- 
amplitude for the process q4 + W -+ Lz is 

-2i [E 4!(qL) 
mw(q-,?-; L-,-L+) = (IV2 _ :\$ 

+ ihfwr,) 

2i (qL)’ IZ’L] 
= (qg (W - ‘L&g i iMwr,v) 

2i !qZf (LL) 

= iqiJj (IV2 - AIf, T iMwr$vj 
(4.34) 



Adding n gluons with the same helicity to this process, gives 

mw(q ,g;,.“,g,-,qi;L-,z+) = 

2i (qL)2 [Lq 

<q1)(12) “‘(7lq) (1VZ - AI& i iMwr?w) 

w(4-,9;>“. :g,,q+; C,Z;+) = 

(-1)” 2i !p Z]’ (IL) 

‘q1][12! ” [q] (!VZ - :\I& + iMwI-,) 

If we add two gluons of opposite heiicity, then the sub-amplitudes are 

(4.35) 

(4.36) 

nw(Y-,g;,g;,qi;L-,Z+) = 
-2i 

(w - hf:, + iMwrw) 
(WH~~‘Gf w2+)[17i12 _ (q2)(qL)[~TlIql 

S gw 511 [2iil (4 s12 [2d 
- . 

L (9.2)a(1 ;,;p ;l;-7&+‘I~ 9!) (4.37) 

and 

mw(q-,g;,g~,q+;L-,Z+) = (W - q2: iMwl?w) 
p (~+lG+w!l+) [2al (lq) i (z+I$+*IL+) (z+IG+*Il+) 

S pw Sl2 (23 hll Sl2 Gm 
c [@I (ql) P+i?+WL+)[z~l) c4,38j 

!Pll 5.12 s,w . 
These expressions reproduce well known results. 

The previous discussion can be extended to include the Z boson by decomposing 
the coupling of the 2 to the quarks and leptons into its l&and right handed 
parts and then proceeding as with the W boson. For a complete discussion of the 
calculation for these processes, including the complete results for processes including 

a W boson plus five partons see Berends, Giele and Kuijf, ref.[23]. These results 
agree with those independently obtained by Hagiwara and Zeppenfeld, ref.!24!. 

5 Approximate Matrix Elements 

The techniques described in the previous Sections provide very powerful tools to cal- 
culate the matrix elements of very complex processes. AS an example, the Berends 



and Giele recursive reiations were recently used for the calculation of &gluon scatter- 

ing 1251. The resulting expressions, however, prove very slow to evaluate numerically 
because of their complexity, thus making it almost impossible to generate a number 

of events large enough to perform relevant physics studies. 

These considerations. and the importance of haying fast event generators to 

simulate multi-jet processes at high-energy hadron colliders, where these processes 
will provide important backgrounds to many possible new physics signals, justify the 
study of approximate expressions which describe sufficiently well the exact matrix 

elements throughout phase-space and at the same time are simple enough to allow 
very fast simulations. 

Kunszt and Stirling i26I and Maxwell [27] were the first to realize that the Parke 

and Taylor amplitudes, Equation (2.46), can be properly fudged in a systematic way 
so as to reproduce the full sum over all the allowed helicity amplitudes for gluonic 
processes. This idea was later generalized to other processes in which at least one set 

of helicity amplitudes is known in both hadronic 127, 26,291 and e+e- [30] multi-jet 
production. In this Section we will describe these various approximation schemes, 
referring the reader to the original literature for numerical comparisons between 
them. 

5.1 The Kunszt and Stirling Approximation 

We wilI start from the simplest scheme, namely that of Kunszt and Stirling (KS, 
see Ref.[Zti]). It amounts to assuming that ail of the helicity amplitudes have ‘on 
average’ the same value, and therefore the fulI amplitude can just be obtained by 
multiplying the Parke and Taylor (PT) ex ressions by a proper weight, representing p 
the ratio between the number of non-zero helicity configurations and the number of 
the Msximum Helicity Violating (MHV) configurations whose matrix-elements are 

described by the PT formula. 

This approximation becomes particularly simple when neglecting sub-leading 

terms in l/N. This is justified because the sub-leading terms have softer collinear 
singularities than the leading ones, and therefore do not contribute substantially to 
the numerical value of the matrix elements. In particular, for n = 6 the sub-leading 
terms are finite j12], and only contribute of the order of few percent to the full 

square. 

For an n-gluon process the number of MHV amplitudes is n(n - 1) if n > 4 and 

n(n - 1)/2 if n = 4. The total number of non-zero helicity amplitudes is instead 
2” -2(n t 1). For n = -1,5 these multiplicities coincide, and the PT formula describes 



the exact results, as is well known. For n larger than 5, the KS approximation gives: 

M’7”‘S - 
‘2” - 2(n + 1) 

- 
n(n - 1) dcP%-‘-‘* 

For n = 6,7 , for example, the fudge factor is 513 and 013, respectively. 

To describe processes with initial state quarks, KS suggest the use of the so 
called effective structure function approximation, which gives a good description 
of the two-to-two QCD processes. According to this approximation in most of the 

relevant phase-space the differential cross-sections for processes initiated by gg, by 
qg and by ~IJ or qq stand in a constant ratio: 

do‘,,, : dasq : duq,, = 1 : 4/9 : (4/g)‘. (5.2) 

In this way the fuIl differential cross-section, weighted by the appropriate structure 
functions, reads: 

bet = F(+Y+ug,m (5.3) 

f%) = s(z) + 4/g (q(z) + az)), (5.4) 

g(z) and q(z) being the gluon and quark structure functions. For da,,, finally, one 
takes Eq.(5.1). 

The KS approximation scheme tends to overestimate the exact results and the 
effective structure function approximation is less and less accurate for an incrcas- 
ing number of partons in the final state; nevertheless the KS approximation is an 
extremely useful tool for simple but significant estimates of multi-jet rates and dis- 
tributions. For comparisons of this scheme with &act calc&tions, see for example 
References 126, 28: 29, 211. 

5.2 The Infrared Reduction Technique 

It is well known that in the limit in which two partons (say i and i) become collinear, 
a given process can be described in the Weissziiker-Williams (W-W) approximation: 

da(“) = &q f(z) dd”-‘) 

where ,f( z) is an appropriate function of the fraction of momentum carried by one 
of the two partons becoming c&near, and do(“-‘1 is the partonic cross-section for 
the effective (n - l)-particle process in which the two collinear partons are replaced 
by the single one into which they merge. On the pole the W-W approximation is 
nothing but the factorization of the amplitude, discussed in various occasions in the 



previous Sections. The functions J(z), in the case of a QCD process, are just the 

Altareili-Parisi (AP) [19] splitting functions. 

The infrared reduction technique introduced by Maxwe [27] improves the W-W 
approximation by using the exact matrix elements for some simple heiicity configu- 

rations, and derives the other helicity configurations by approximating their relative 
weights at the closest collinear pole. 

Next to a collinear pole (say pl . pz - 0) each of the non-vanishing helicity 
ampiitudes will factorize in the following way: 

d# = & 2 fw(Z) d$‘) + fmite 
h’ 

where h’ are the various helicity configurations which can contribute to the factoriza- 
tion, and f,,,(z) are the corresponding polarized AP splitting functions, depending 
on the variable z = E,/(E, i E,). For the time being we will restrict our attention to 
gluon scattering. For the full process, factorization is described by Equation (5.5), 
with f(z) given by: 

f(z) = g2 iv 1 + t4 + (1 - 2)’ 

L(1 - 2) 

If we just sum over the PT amplitudes, instead, we obtain: 

dc$! = 2&) fPT(zt sij) do&‘) 

where d&J is the sum over all the MHV amplitudes, and fp~(z, J;j) is given by: 

R = E:i>j3tj 
Ci3k ' 

the indices i and j being different from the collinear particles, and P being the sum 
of the collinear momenta. 

Equation (5.8) can also be rewritten in the following fashion: 

with: 

do(,“,! = y’ 2(ptp2j fdz) d+;” 

U(z3slj) = 
(1+ R)(l + z4 + (1 - z)* 

R + zd + (1 - z)” 
(5.12) 



By equating Equations (5.11) and (5.5) we therefore obtain: 

Maxwell suggested that while the W-W approximation is not very good unless we 

are very close to a collinear pole, Equation (5.13) is rather good throughout phase- 
space, provided we perform the factorization considering the pair of partons with 
the minimum sij. In other words, while the value of the full differential cross section 

is not well reproduced in the W-W approximation away from the collinear poles, 
what is well approximated is the relative weight of different helicity amplitudes. 

Since doTi, = d&, for n = 6 we obtain: 

dg?Jl = dog$x( Z, S;j) 

while for larger n the infrared reduction can be iterated, giving: 

dm$$, = dc$” fi Xb(Zk,sij), 
kS 

(5.14) 

(5.15) 

with an obvious notation. 

If the two partons which minimize 1sijl belong to initial and final state, we can 
still use Equations (5.13) and (5.12) p rovided we keep all of the momenta as outgoing 

(which implies that the energies of the initial state particles will be negative) and 
define: 

Ei 
’ = Ei + Ej 

(5.16) 

The z defined in this way cannot be interpreted directly as the fraction of momentum 
anymore, since it will not satisfy the constraint 0 < L < 1. In particular, if i is the 
final state parton then z < 0, while if i is the initial state, then z > 1. However it can 
be easily checked that with this prescription Equations (5.13) and (5.12) reproduce 

the desired factorization properties. 

This reduction technique has been applied to many processes, see Mangano and 
Parke[a for references. 

6 Conclusion 

In following lectures I have shown how to use the Helicity Amplitude technique to 
calculate the cross section for many processes involving large numbers of partons 
in the final state. This technique gives exact analytic matrix elements, numerical 



recursive algorithms or approximate matrix elements for evaluating cross sections 

and hence is an extremely powerful tool for phenomenological studies of multi-jet 

phenomena in High Energy Colliders. 

I would like to thank all the organizers of this school for the very warm hospi- 
tality provided during my stay in l&fez&co and to the students who provided many 
stimulating conversation between sessions. 

A Appendix: Spinor Calculus and Feynman Rules 

A.1 Spinor Calculus 

In the Weyl basis define 

lp*) = ;(1 k%MP) 

From these spinors we can form various spinor products 

(Pcl) = (P -In+) bql = (P+b?-), 

(A-1) 

(A-2) 

(P-IV) = 0 

which are normalized so that 

(P +Iq+) = 0 (A.31 

(P *I Yr IPh) = 2P,. (A.41 

From the properties of the Dirac algebra, it is straightforward to prove the following 

useful identities: 

$ip*) = (p*/fi = 0 (A.51 

(P4 = 44P)I bnl = -M (A.6) 

(PP) = [PPl = 0 (A.7) 

rj = ip+)(p+/ + Jp--)(p-: (A.8) 

2lp*t)(q+/ = ;(1*75)T%i17~lP*)r (A.91 

iwj = -&74p. q)hi’ (A.lO) 



(P~)hJl = s, = 2(P . q), (Ax) 

(p*i7,, ...7$l>,,*I ki=) = (q-f17 PI*+, ‘. .7!4 IPGI (A.12) 

(p*/7,, ... 7Ul.. IYF) = -(9+IYrr. “.7lAl IPF), (A.13) 

(AB)(CD) = (AQ(CB)+(AC)(BD) (A.14) 

(A+!7r1B+)(C-j7Hl~-) =2!AD!(CB). (A-15) 

A numerical recipe for evaluating these spinor products is 

iij) 5 Jls,l exP(+j), (A.16) 

[ii] s Jisiji exp (iJij). (A.17) 

If both momenta having positive energy, the phase factor ~ij is defined, in B popular 
representation of the gamma matrices, by 

COS~ij = (PfP,t - Pip:) 

$5@Fj 

sin&j = (PTP: - P:Pt) 

&grj 
(A.18) 

Where p= = (p” L p”) and since pt = 0, the spinor product for this representation 
of gamma matrices are undefined for a momentum vector in the minus 3 direction. 

If one or more of the momenta in (ij) have negative energy, dij is calculated with 
minus the momenta with negative energy and then n7r/2 is added to $qj where n 

is the number of negative momenta in the spinor product. The associated phase 
factor. ~;j , for [ij] can be calculated from Sij using the identity S;j E (ij) [ji]. 

A.2 Summary of Feynman Rules 

Here we summarize the Color truncated Feynman rules, where all the vertices are 
cyclically ordered and ail momenta are outgoing. Demonstrating that the subampli- 

t&s m(gl,gzrg3ra) and m(q,gl,gz,q) are gauge invariant is an easy way to check 
the consistency of our conventions. 



. External, outgoing fermion, F, helicity h: 

(F&l. (A.19) 

. External, outgoing anti-fen&n, 7, helicity rt: 

IFFF). 

. External, outgoing vector, momentum p, reference k, h&city i: 

(A.20) 

$hk) = *$$$#, 
E*(P, k) -r = 

‘e% (IpT)(k F/ + lkf)(p *!). 

(A.21) 

(A.22) 

. Fermion propagator. momentum q, in the direction of the fermion arrow: 

i -. ,“I 
l Vector propagator, momentum p: 

SW --z -. 
P2 

. Fermion-vector-antifermion vertex, order (FIT): 

i-&r,. 

. Tri-Vector vertex. order (123), all momenta outgoing from vertex: 

i 3 /(PI - P2)r&,w + (P1 - P3L&v, + (P3 - P*Lsrr,rr,l. 

. Quark-Vector vertex, order (1234): 

2 

i$ (&7,,dh, - %I IJ. grt VI - Sr*n9&w4 ) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

(A.27) 
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